

Instructions d'utilisation Multimètre de table graphique

Table des matières

1.Informations sur la sécurité	1
Règles et symboles de sécurité	1
Exigences générales de sécurité	2
Valeurs d'entrée maximales	3
Connexions principales (entrée HI et entrée LO) Valeurs d'entrée4	
Connexion de courant (I) Valeurs d'entrée	4
Connexions de détection (HI Sense et LO Sense) Valeurs d'entrée	4
Catégories de surtension5	
2.Démarrage rapide	6
Consultez le site	6
Dimensions	7
Dispositif de verrouillage des jambes	7
Vue d'ensemble de l'avant	8
Vue d'ensemble de la face arrière	11
Interface utilisateur	12
Alimentation électrique	13
Allumer	14
Connexions de mesure	15
3.fonctions et fonctionnement	17
Sélection de la plage de mesure	17
Vitesse et résolution de mesure	18
Principales fonctions de mesure19	
Mesurer la tension CC	20
Mesurer la tension CA	21
Mesure du courant continu	22
Mesure du courant alternatif	24
Mesurer la résistance	25
Test de continuité	

Test des diodes
Mesurer les capacités
Mesurer les fréquences et la période31
Mesurer la température
Double affichage
Déclenchement
Déclenchement automatique
Gâchette unique
Déclenchement externe
Fonctions mathématiques
Statistiques
Limites
dB/dBm
Valeur relative
Afficher42
Numéro 42
Barmeter
Affichage des tendances43
Histogramme
Enregistrement des données46
Enregistrement manuel
Enregistrement de la voiture47
Configuration du port49
Série
Déclencheur
Sortie49
Type de réseau
LAN
Menu utilitaire
Langues

Luallaye	. 50
Horloge	. 50
SCPI	. 51
Paramètres standard	. 51
Informations sur le système	. 54
Mise à jour du micrologiciel	. 54
Test LCD	. 56
Test du clavier	. 56
4.Tutoriel sur les mesures	. 57
Erreur de charge (tension CC)	57
Mesures AC RMS réelles	58
Erreur de charge (tension CA)	59
Erreur de charge (tension CA)	59 . 60
Erreur de charge (tension CA) 5.Dépannage 6.Spécifications techniques	59 . 60 . 61
Erreur de charge (tension CA)	59 . 60 . 61 . 66
Erreur de charge (tension CA)	59 . 60 . 61 . 66 69
Erreur de charge (tension CA)	59 . 60 . 61 . 66 69 69

1. Informations sur la sécurité

Consignes de sécurité pour l'utilisation de l'appareil

Cet appareil est conforme aux réglementations européennes 2004/108/CE (compatibilité électromagnétique) et 2006/95/CE (basse tension), comme spécifié dans l'addendum 2004/22/CE (marque CE). Catégorie de surtension II ; degré de pollution 2.

Règles et symboles de sécurité

Règles de sécurité

Les termes suivants peuvent apparaître dans ce manuel :

Avertissement : "Avertissement" indique les conditions et les étapes de fonctionnement qui présentent un danger pour l'opérateur.

Attention : "Attention" indique des conditions et des opérations qui peuvent causer des dommages au produit ou à d'autres biens.

Symboles de sécurité

Symboles sur le produit :

Les symboles suivants peuvent apparaître sur le produit

	Courant continu / tension (DC)		<u> </u>	Attention au risque de choc électrique !
\sim	Courant alternatif / tension alternative (CA)		\wedge	Attention - voir les instructions d'utilisation !
\sim	Courant / tension continu et alternatif		CE	Répond aux directives de conformité CE
4	Conducteur de protection / connexion à la terre		\mathcal{H}	Dimensions de l'unité
CAT I (1000V) Catégorie de sur dans les système		Catégorie de surte dans les systèmes	ension I. Ne jama CAT I à l'une de	ais appliquer une tension supérieure à 1000V es entrées de mesure.
CAT II (600V) Catégorie de surte les systèmes CAT		nsion II. Ne jam II à l'une des en	ais appliquer une tension supérieure à 600V dans trées de mesure.	
Ce da da		Ce produit testé e dans les déchets é dans les déchets r	st conforme à la lectroniques. Le nénagers !	directive DEEE et doit être éliminé séparément es instruments de mesure n'ont pas leur place

Exigences générales de sécurité

Afin de garantir la sécurité de fonctionnement de l'appareil et d'éviter des blessures graves dues à des surtensions ou des courts-circuits, il convient de respecter les consignes de sécurité suivantes pour l'utilisation de l'appareil. Les dommages causés par le non-respect de ces instructions sont exclus de toute réclamation de quelque nature que ce soit.

- Cet appareil ne doit pas être utilisé dans des circuits à haute énergie.
- Avant de brancher l'appareil sur une prise de courant, vérifiez que le réglage de la tension sur l'appareil correspond à la tension du réseau existant.
- Ne branchez l'appareil qu'à des prises avec un conducteur de protection relié à la terre.
- Ne posez pas l'appareil sur une surface humide ou mouillée.
- Ne pas faire fonctionner l'appareil à proximité de champs magnétiques puissants (moteurs, transformateurs, etc.).
- Ne dépassez en aucun cas les valeurs d'entrée maximales autorisées (risque grave de blessure et/ou de destruction de l'appareil).
- Les tensions d'entrée maximales spécifiées ne doivent pas être dépassées. Si l'on ne peut exclure avec certitude que ces pics de tension soient dépassés sous l'influence de perturbations transitoires ou pour d'autres raisons, la tension de mesure doit être préamortie en conséquence (10:1).
- Avant de passer à une autre fonction de mesure, déconnectez les fils d'essai ou la sonde du circuit de mesure.
- Avant la mise en service, vérifiez que l'appareil, les câbles de test et les autres accessoires ne sont pas endommagés et que les câbles et fils ne sont pas dénudés ou pliés. En cas de doute, n'effectuez pas de mesures.
- N'effectuez les travaux de mesure que dans des vêtements secs et de préférence avec des chaussures en caoutchouc ou sur un tapis isolant.
- Ne pas toucher les pointes de mesure des cordons de test.
- Il est essentiel de respecter les avertissements figurant sur l'appareil.
- L'appareil ne doit pas être utilisé sans surveillance
- N'exposez pas l'appareil à des températures extrêmes, aux rayons directs du soleil, à une humidité extrême ou à l'humidité.
- Évitez les fortes vibrations
- Avant de commencer les mesures, l'appareil doit être stabilisé à la température ambiante (important lors du transport d'une pièce froide à une pièce chaude et vice versa).
- Ne dépassez pas la plage de mesure définie pendant toute mesure. Cela évitera d'endommager l'appareil
- Nettoyez régulièrement le boîtier avec un chiffon humide et un détergent doux. N'utilisez pas de nettoyants abrasifs corrosifs.
- Cette unité est adaptée à une utilisation en intérieur uniquement

- Évitez toute proximité avec des substances explosives et inflammables.
- L'ouverture de l'appareil et les travaux d'entretien et de réparation ne doivent être effectués que par des techniciens qualifiés.
- Ne posez pas l'avant de l'appareil sur l'établi ou le plan de travail pour éviter d'endommager les commandes.
- N'apportez aucune modification technique à l'appareil.
- Les instruments de mesure n'ont pas leur place dans les mains des enfants

Valeurs d'entrée maximales

Les circuits de protection du multimètre peuvent éviter d'endommager l'appareil et le protéger contre le risque de choc électrique si les limites de mesure ne sont pas dépassées. Pour garantir un fonctionnement sûr de l'appareil, ne dépassez pas les valeurs d'entrée affichées sur le panneau avant, telles que définies ci-dessous :

Le fusible de la gamme de courant de 10A, remplaçable par l'utilisateur, est situé sur le panneau avant. Pour garantir la protection, remplacez le fusible uniquement par des fusibles de même type et de même valeur nominale. Pour connaître le type et le calibre du fusible, voir également la page "7 Connexions de l'alimentation électrique" sous "Présentation du panneau avant" à la page 9.

Connexions principales (entrées HI et LO) Valeurs d'entrée

Les bornes d'entrée HI et LO sont utilisées pour les tests de tension, résistance, continuité, fréquence, période, capacité, diode et température. Deux limites de mesure sont définies pour ces bornes :

Limite de mesure de l'entrée HI à l'entrée LO

La limite de mesure de l'entrée HI à l'entrée LO est de 1000 VDC ou 750 VAC, ce qui est également la mesure de tension maximale. Cette limite peut également être exprimée par 1000 Vpk maximum.

LO Entrée vers la terre de protection

La borne d'entrée LO peut "osciller" en toute sécurité jusqu'à 500 Vpk par rapport à la terre, la terre étant définie comme le conducteur de terre de protection via le câble secteur fourni connecté au compteur.

Comme on peut le constater à partir des limites ci-dessus, la limite de mesure pour la borne d'entrée HI est un maximum de 1500 Vpk par rapport à la terre lorsque l'entrée LO est un maximum de 500 Vpk par rapport à la terre.

Connexion de courant (I) Valeurs d'entrée

La limite de mesure entre la borne d'entrée de courant (I) et la borne d'entrée LO est de 10 A (CC ou CA). Notez que les bornes d'entrée de courant ont toujours approximativement la même tension que la borne d'entrée LO, sauf si un fusible de protection de courant est ouvert.

Bornes de détection (HI Sense et LO Sense) Valeurs d'entrée

Les bornes de détection HI et LO sont utilisées pour les mesures de résistance à quatre fils.

La limite de mesure de HI Sense sur l'entrée LO est de 200 Vpk.

La limite de mesure entre HI Sense et LO Sense est de 200 Vpk.

La limite de mesure de LO Sense à LO Input est de 2 Vpk.

Remarque : la limite de 200 Vpk des bornes de détection est la valeur limite. Les tensions de fonctionnement pour les mesures de résistance sont nettement inférieures en fonctionnement normal - généralement jusqu'à \pm 12 V.

Catégories de surtension

L'évaluation de la sécurité du multimètre :

1000 V, CAT I

Catégorie de mesure IEC I. La tension de mesure maximale est de 1000 Vpk à la connexion HI-LO.

600 V, CAT II

Catégorie de mesure II de la CEI. Les entrées peuvent être connectées à la tension du secteur (jusqu'à 600 VAC) dans des conditions de surtension de catégorie II.

Catégorie de mesure Définition

La **catégorie CAT I** s'applique aux mesures effectuées sur des circuits qui ne sont pas directement connectés au secteur. Il s'agit par exemple de mesures sur des circuits qui ne sont pas dérivés du réseau et de circuits principaux (internes) spécialement protégés.

La **catégorie CAT II** s'applique à la protection contre les transitoires provenant des équipements consommateurs d'énergie alimentés par l'installation fixe, tels que les téléviseurs, les PC, les outils portables et autres circuits domestiques.

La **catégorie CAT III** s'applique à la protection contre les transitoires dans les installations de systèmes fixes tels que les tableaux de distribution, les boîtes de jonction et les circuits de dérivation, ainsi que les systèmes d'éclairage dans les grands bâtiments.

La **catégorie CAT IV** s'applique aux mesures à la source de l'installation basse tension. Par exemple, les compteurs électriques et les mesures sur les dispositifs de protection contre les surintensités primaires et les unités de contrôle des ondulations.

2. Démarrage rapide

Inspection générale

Après avoir reçu un nouveau multimètre, il est recommandé de vérifier l'instrument en suivant les étapes suivantes :

1. vérifier si des dommages ont été causés lors du transport.

S'il s'avère que la boîte d'emballage ou le coussin de protection en mousse plastique a subi de graves dommages, ne les jetez pas encore avant que l'appareil complet et ses accessoires aient passé tous les tests de fonctionnement.

2. vérifier les accessoires

Les accessoires fournis sont décrits dans l'annexe A. Veuillez vérifier que les accessoires ont été fournis complets. Si une pièce est manquante ou endommagée, veuillez contacter votre distributeur PeakTech ou PeakTech directement pour un remplacement.

3. vérifier l'appareil de mesure completSi vous

constatez que votre appareil est endommagé, ne fonctionne pas normalement ou ne répond pas à ses spécifications, veuillez contacter le revendeur responsable ou PeakTech directement. Si l'appareil a été endommagé pendant le transport, veuillez conserver l'emballage et le signaler au revendeur / distributeur PeakTech.

Dimensions

Dispositif de verrouillage des jambes du pied

Sous le panneau avant se trouve un support permettant d'aligner le multimètre pour une meilleure vue de l'écran.

Vue d'ensemble de l'avant

Fig. 1- 1Vue d'ensemble de la face avant

No n.	Nom	Description		
1	LCD	Écran avec interface utilisateur		
2	Boutons de menu	La "touche logicielle" correspondante active les éléments de menu correspondants à l'écran.		
3	Touches de fonction			
	Sauvez	Collectez les données dans l'ensemble de données manuel. L'appareil mémorise la lecture actuelle chaque fois que vous appuyez sur le bouton. Voir page 46, enregistrement manuel.		
	Dossier	Accès au menu pour l'enregistrement manuel et l'enregistrement automatique. Voir page 46, Fonction d'enregistrement.		
	Marche/Arrêt	Si la source de déclenchement est définie comme Auto, lancez ou arrêtez le déclenchement automatique.		
		Si la source de déclenchement est définie comme unique, l'unité émettra un déclenchement chaque fois que ce bouton sera pressé.		

	Mathématiques	Effectuer des opérations mathématiques (statistiques, limites, dB / dBm, REL) sur les résultats de mesure.		
	Utilitaire	Ouvre les fonctions du système, notamment la langue, le rétroéclairage, l'horloge, le SCPI, l'état d'usine, les informations système, le test LCD, le test des touches.		
	Port	Définit la connexion série, le déclencheur, le connecteur de sortie et le réseau.		
4	Entrées de détection HI et LO	Prises d'entrée de signal, utilisées pour les mesures de résistance à quatre fils.		
5	Entrées HI et LO	Prises d'entrée de signal, utilisées pour les mesures de tension, résistance, continuité, fréquence (période), capacité, diode et température.		
6	Touches de portée/flèche	Lorsque la touche logicielle Gamme est affichée dans le menu de droite, vous pouvez appuyer sur la touche Gamme pour passer de la gamme automatique à la gamme manuelle. Appuyez sur les touches fléchées haut/bas pour activer la gamme manuelle et augmenter ou diminuer la gamme de mesure.		
		Lors du réglage d'un paramètre, appuyez sur les touches fléchées gauche/droite pour déplacer le curseur, puis sur les touches fléchées haut/bas pour augmenter ou diminuer la valeur.		
	Porte-fusible pour la mesure du courant	Le calibre du fusible est de 10A, 250 VAC, sous forme de fusible céramique de 5x20mm.		
		Pour remplacer le fusible : Mettez le multimètre hors tension et retirez le câble d'alimentation. Utilisez un tournevis à lame plate pour tourner le porte-fusible dans le sens inverse des aiguilles d'une montre et retirez le porte-fusible. Insérez le nouveau fusible identique dans le porte-fusible et remettez le support dans l'appareil. Tournez le porte- fusible dans le sens des aiguilles d'une montre pour le verrouiller.		

8	Prises d'entrée de courant AC/DC	Bornes d'entrée de signal utilisées pour les mesures de courant AC / DC.		
9	Interrupteur d'alimentation	Allume/éteint le multimètre		
10	Fonction de mesure- boutons	 Nesure de la tension CC ou CA Mesure du courant continu ou alternatif Test de résistance, de continuité ou de diode Contrôle de la capacité Mesure de la fréquence/période Mesure de la température 		
11	Graphique	Sélectionnez ce qui est affiché : Affichage des nombres, diagramme à barres, affichage des tendances ou histogramme.		
12	Double	Appuyez sur cette touche pour afficher la liste des fonctions disponibles dans le menu de droite. Pour sélectionner une fonction, appuyez sur le bouton de menu correspondant (2) et la lecture s'affiche sur le sous-affichage.		
13	Connexion USB	Permet de connecter un périphérique de stockage USB externe, par exemple une clé USB pour l'enregistrement des valeurs mesurées.		

Vue d'ensemble de l'arrière

No n.	Nom	Description
1	Entrée de déclenchement externe	Déclenchez le multimètre en connectant une impulsion de déclenchement. La source de déclenchement externe doit être sélectionnée. ($Port \rightarrow Déclenchement \rightarrow Source (externe)$)
2	Prise de sortie auxiliaire	La valeur par défaut est "Sortie de mesure complète du voltmètre" et émet une impulsion lorsque le multimètre termine une mesure afin que vous puissiez le signaler à d'autres appareils. Ce port peut également être configuré pour donner une impulsion lorsque les limites sont dépassées dans la limite mathématique. (Port \rightarrow Sortie \rightarrow Sortie (P/F)).
3	RS232	Se connecte au PC via RS-232.
4	Prise USB (type B)	Prise de connexion USB de type B pour la connexion de données avec un dispositif terminal, tel que le PC.
5	Prise pour réseau local (LAN)	Prise de connexion RJ-45 pour la connexion de données avec un dispositif terminal, tel que le PC, via un réseau.

6	Sélecteur de tension secteur	Sélectionnez le réglage de la tension en fonction de l'alimentation en courant alternatif utilisée entre 110 V et 220 V.			
7	Fusible de tension secteur	Utilisez uniquement un fusible correspondant à l'alimentation en courant alternatif utilisée. Pour remplacer le fusible, voir page 68, annexe C :			
		Tension secteur	Fusible		
		100 - 120 V AC	250 V, F1AL		
		220 - 240 V AC	250 V, F0.5AL		
8	Connexion à la tension du réseau	Prise de connexion pour l'alimentation du multimètre en tension de secteur.			
9	Terre PE vis	Si vous souhaitez raccorder l'appareil séparément au conducteur de protection, par exemple sur une table de travail, utilisez cette connexion.			
10	Instrument "Cable Lock	Ouverture pour sécuriser l'unité contre le vol avec un câble de verrouillage.			

Interface utilisateur

Fig. 1-2Interface utilisateur (fonction de mesure unique)

Mode de déclenchement

Icône d'état

AfficherDescriptionDéclenchDéclenchemeneurt automatiqueExtDéclenchemen	Ş	Symbol e	Description	
		品	Le réseau local est connecté	
Trigger	t externe		Ŷ	L'unité est connectée en tant qu'"esclave" à un PC.
				L'enregistrement automatique des valeurs
				Un support de stockage USB est connecté à l'unité
				Enregistrement manuel des valeurs mesurées

Primary function

Fig. 2-4 Interface utilisateur (fonction de mesure double)

Alimentation électrique

Alimentation électrique 100 - 120 VAC ou 220 - 240 VAC. L'utilisateur doit régler l'échelle de tension du sélecteur de tension d'alimentation secteur selon les normes en vigueur dans son pays (voir Figure 2 2 Vue d'ensemble du panneau arrière) sur le panneau arrière et utiliser un fusible approprié.

Tension	Fusible
100 - 120 V AC	250 V, F1AL
220 - 240 V AC	250 V, F0.5AL

Pour modifier le réglage de la tension de l'appareil, procédez comme suit :

- (1) Mettez l'interrupteur d'alimentation du panneau avant hors tension et retirez le cordon d'alimentation.
- (2) Vérifiez que le fusible (250 V, F0.5AL) installé avant de quitter l'usine correspond à la tension secteur sélectionnée. Si ce n'est pas le cas, changez le fusible. (Page 68, Annexe C : Fusible secteur).
- (3) Placez le sélecteur de tension secteur sur la tension d'alimentation souhaitée.

Allumer

(1) Connectez l'appareil à la tension du secteur à l'aide du câble secteur fourni.

Pour éviter tout choc électrique, ne branchez le compteur qu'à une prise de courant munie d'un contact à la terre.

(2) Appuyez sur le bouton d'alimentation situé à l'avant de l'appareil. L'appareil va maintenant démarrer et afficher un écran de démarrage, ce qui peut prendre quelques secondes.

Connexions de mesure

Après avoir sélectionné la fonction de mesure souhaitée, veuillez connecter le signal (dispositif) à tester au multimètre selon la méthode suivante. Pour éviter tout dommage, ne changez pas simplement la fonction de mesure pendant la mesure.

Mesure de la tension CC

Mesure du courant continu

Mesure de la résistance à 2 fils

Contrôle de continuité

Input VIII-94 VIII-94 VIII-94 VIII-94 VIII-94 VIII-94 VIII-94 VIII-94 Open or Closed Circuit

Mesure de la tension CA

Mesure du courant alternatif

Mesure de la résistance à 4 fils

Test des diodes

Mesure de la capacité

Mesure de la fréquence/période

Mesure de la température

3. Fonction et fonctionnement

Sélection de la plage de mesure

L'unité offre une sélection automatique et manuelle de la gamme. Dans la gamme automatique, le multimètre sélectionne automatiquement une gamme appropriée en fonction du signal d'entrée. En gamme manuelle, vous pouvez définir la gamme de mesure à l'aide du bouton de gamme du panneau avant ou de la touche logicielle associée. La gamme automatique est plus conviviale, tandis que la sélection manuelle de la gamme peut offrir une meilleure précision de mesure et est plus rapide.

Première méthode : modifier la plage de mesure à l'aide du bouton Range

Lorsque l'icône Gamme est affichée dans le menu de droite, vous pouvez appuyer sur le bouton Gamme pour passer de la gamme automatique à la gamme manuelle. Appuyez sur les touches fléchées haut/bas pour activer la gamme manuelle et augmenter ou diminuer la gamme de mesure.

Deuxième méthode : modification de la plage de mesure via la fonction de menu

Sélection automatique de la gamme : Activez la fonction automatique en appuyant sur la touche supérieure correspondante (2) de la barre de touches logicielles. La sélection automatique de la gamme sélectionne la gamme de mesure en fonction de la valeur d'entrée, mais pas de la fonction de mesure.

Sélection manuelle de la gamme : Activez la plage de mesure souhaitée dans le menu de la fonction de mesure à l'aide de la touche correspondante (2) de la touche logicielle.

Bar.

Un conseil :

- Si le signal d'entrée dépasse la plage de mesure, le message "Surcharge" s'affiche.
- Par défaut, la gamme est réglée sur Auto à l'allumage.
- La plage automatique est recommandée pour protéger l'appareil et obtenir des données précises lorsque vous ne connaissez pas la plage de mesure.

- La plage du test de continuité est préréglée à 50Ω ; La plage de la mesure de la diode est fixée à 2 V.

Vitesse et résolution de mesure

L'appareil offre trois vitesses de mesure :

La vitesse "basse" est de 5 mesures/s ; la vitesse "moyenne" est de 50 mesures/s et la vitesse "haute" est de 150 mesures/s.

Pour les mesures de DCV, ACV, DCI, ACI et de résistance à 2 ou 4 fils, la vitesse de mesure est sélectionnable.

La résolution du P4095 est de 4½ chiffres numériques (max. 60000).

La résolution du P4096 peut être de 4½ ou 5½ chiffres. Le choix de la vitesse de mesure influence la résolution de la mesure. Le multimètre sélectionne automatiquement une résolution de mesure en fonction des paramètres de mesure actuels.

Fonction	Vitesse de mesure		Résolution de mesure		
DCV	Vitesse "faible".		P4095	11/2 - digit	
ACV			1 4000		
DCI			P4096	$5\frac{1}{2}$ -diait	
ACI					
2- /4-fils	"Vitesse "moyenne "Vitesse "élevée		414 digit		
Résistance			472 -uigit		
Transit pr.	Fixé à la vitesse "Haute".		4½ -digit		
Diode	Fixé à la vitesse "Haute".		4½ -digit		
			4 ¹ / ₂ -chiffres		
Capacité	"movenne	ia	VIIESSE	(représentation des 4 premiers chiffres	
	moyenne			uniquement)	
Fréquence/	Fixé à	la	vitesse	4½ -digit	
Période	"moyenne				
Température	empérature Fixé à la vitesse "moyenne		vitesse	11/ digit	
remperature			4/2 -uigit		

Relation entre la vitesse de mesure et la résolution de la mesure :

Principales fonctions de mesure

Mesure de la tension CC

Les étapes de la demande :

1. Activer la gamme de mesure DCV

Appuyez sur le 🔁 bouton situé à l'avant de l'appareil

2. Connectez les fils de test

3. Sélectionnez la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Une protection d'entrée de 1000 V est disponible dans toutes les zones.
- P4096 : dépassement de 20% pour toutes les plages de mesure sauf 1000
 V.
- P4095 : dépassement de 10% pour toutes les plages de mesure sauf 1000
 V.
- Si la valeur mesurée dépasse 1050V dans la plage de mesure de 1000V, "surcharge" s'affiche.

4. Sélectionner le taux de mesure

Appuyez sur la touche logicielle "Taux de mesure" pour basculer entre Low, Mid ou High. Voir page 19, Taux de mesure et résolution.

5. Filtre de réglage (en option)

Appuyez sur la touche logicielle "Filtre" pour activer ou désactiver le filtre CA. Si des composants AC sont présents dans le signal DC d'entrée, ils peuvent être désactivés par le filtre AC pour rendre les données de mesure plus précises.

Régler l'impédance d'entrée (optionnel - uniquement dans la gamme 200mV et 2V)

Appuyez sur la touche logicielle "Impédance" pour sélectionner "10M" ou "10G". Le réglage par défaut est "10M" (Ohm).

Dans la plage de 200 mV ou 2 V, vous pouvez sélectionner "10G" pour réduire l'erreur de charge provoquée par l'objet de mesure, qui peut être causée par le multimètre (voir Erreur de charge (tension continue) à la page 57).

Un conseil :

- **10M** : Réglez les impédances d'entrée à 10 MΩ dans toutes les gammes.
- 10G : les impédances d'entrée dans la plage de 200 mV et 2 V sont réglées sur 10 GΩ, tandis que dans la plage de 20 V, 200 V et 1000 V, les impédances sont toujours de 10 MΩ.

7. Valeur relative (application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesure de la tension alternative

Les étapes de la demande :

1. Activation de la gamme de mesure ACV

Appuyez sur le $\overline{=V}$ bouton du panneau avant pour passer à la plage de mesure de la tension DCV et à nouveau pour passer à la plage ACV.

2. Connexion des fils de test

3. Définir la plage de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Une protection d'entrée de 750 V est disponible dans toutes les zones.
- P4096 : dépassement de 20% pour toutes les plages de mesure sauf 750 V.
- P4095 : dépassement de 10% pour toutes les plages de mesure sauf 750 V.
- Si la valeur mesurée dépasse 787,5 V dans la plage de mesure de 750 V, le message "Surcharge" s'affiche.

4. Sélectionner le taux de mesure

Appuyez sur la touche logicielle du taux de mesure pour basculer entre Low, Mid ou High. Voir page 19, Taux de mesure et résolution.

5. Valeur relative. (Application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesures du courant continu

Les étapes de la demande :

1. Activation de la plage de mesure du courant DCI

Appuyez sur le **¬**A bouton sur le panneau avant pour activer la gamme de mesure CC

2. Connectez les fils de test

3. Sélectionner la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Le multimètre utilise deux types de fusibles pour la protection du courant : le fusible de courant 10 A sur le panneau arrière et le fusible d'entrée de courant 12 A intégré.
- P4096 : 20% au-dessus de la gamme pour toutes les gammes sauf la gamme 10 A.
- P4095 : 10% au-dessus de la gamme pour toutes les gammes sauf la gamme 10 A.
- Si la valeur mesurée dépasse 10,5 A dans la plage de 10 A, le message "surcharge" s'affiche.

4. Sélectionner le taux de mesure

Appuyez sur la touche logicielle du taux de mesure pour basculer entre Low, Mid ou High. Voir page 19, Taux de mesure et résolution.

5. Filtre de réglage (en option)

Appuyez sur la touche logicielle "Filtre" pour activer ou désactiver le filtre CA. Si des composants AC sont présents dans le signal DC d'entrée, ils peuvent être désactivés par le filtre AC pour rendre les données de mesure plus précises.

6. Valeur relative. (Application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesures du courant alternatif

Cette section décrit comment configurer les mesures de courant alternatif.

Les étapes de la demande :

1. Activation de la plage de mesure du courant ACI

Appuyez sur le **¬**A bouton du panneau avant pour activer la mesure du courant DCI, puis à nouveau pour passer en ACI.

2. Connectez les fils de test

3. Sélectionner la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Le multimètre utilise deux types de fusibles pour la protection du courant : le fusible de courant 10 A sur le panneau arrière et le fusible d'entrée de courant 12 A intégré.
- P4096 : 20% au-dessus de la gamme pour toutes les gammes sauf la gamme 10 A.
- P4095 : 10% au-dessus de la gamme pour toutes les gammes sauf la gamme 10 A.
- Si la valeur mesurée dépasse 10,5 A dans la plage de 10 A, le message "surcharge" s'affiche.

4. Sélectionner le taux de mesure

Appuyez sur la touche logicielle du taux de mesure pour basculer entre Low, Mid ou High. Voir page 19, Taux de mesure et résolution.

5. Valeur relative. (Application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesurer la résistance

Cette section décrit comment configurer les mesures de résistance à 2 fils et à 4 fils. Le multimètre permet de mesurer la résistance à 2 et 4 fils. Si la résistance mesurée est inférieure à 100 k Ω , il est recommandé de mesurer la résistance à 4 fils pour réduire l'erreur de mesure causée par la résistance du cordon de test et la résistance de contact entre la sonde et le point de test, car ces deux résistances ne peuvent plus être ignorées, par rapport à la résistance mesurée.

Les étapes de la demande :

1. Activez la plage de mesure de la résistance $\Omega 2W/\Omega 4W$.

Appuyez sur la Ω touche pour activer la plage de mesure de la résistance. Appuyez sur la touche de fonction $\Omega 2W/\Omega 4W$ pour basculer entre $\Omega 2W$ et $\Omega 4W$.

(mesure de la résistance à 2 fils)

(mesure de la résistance à 4 fils)

2. Connectez les fils de test

3. Sélectionner la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Une protection d'entrée de 1000 V est disponible dans toutes les zones.
- P4096 : dépassement de 20% pour toutes les plages de mesure, sauf 100 MΩ.

P4095 : dépassement de 10% pour toutes les plages de mesure, sauf 100 M Ω .

• Si la valeur mesurée dépasse 105 MΩ dans la plage de mesure de 100 MΩ, le message " Surcharge " s'affiche.

4. Sélectionner le taux de mesure

Appuyez sur la touche logicielle "Taux de mesure" pour basculer entre Low, Mid ou High. Voir page 19, Taux de mesure et résolution.

8. Valeur relative (application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Conseil :

- Si la résistance mesurée est très faible, il est recommandé de procéder à une opération relative afin de réduire l'erreur de mesure causée par le cordon de test lui-même.
- Lors de la mesure, ne touchez pas les deux extrémités de la résistance mesurée et évitez également tout contact avec d'autres surfaces éventuellement conductrices d'électricité, comme le bureau, car sinon le résultat de la mesure pourrait être inexact. Plus la résistance mesurée est grande, plus cette influence est importante.

Contrôle de continuité

Cette section décrit comment configurer le test de continuité.

Les étapes de la demande :

1. Activez le test de continuité. $\left[\begin{array}{c} \Omega \\ \text{(j)} \rightarrow \textbf{j} \end{array} \right]$

Appuyez sur le 0 bouton du panneau avant pour passer à la plage de mesure de la résistance et à nouveau pour passer au test de continuité.

2. Connectez les fils de test

3. Régler le buzzer

Appuyez sur la touche de fonction Signal pour activer ou désactiver l'avertisseur sonore. Lorsque le buzzer est activé, un son est émis lorsque la résistance mesurée descend en dessous de la valeur mesurée indiquée sous "Seuil".

4. Ajuster le réglage du seuil

Appuyez sur la touche logicielle de seuil pour définir la valeur de seuil souhaitée pour le testeur de continuité.

Appuyez sur la touche \bigcirc pour déplacer le curseur sur AUsélectionnez le chiffre, puis appuyez sur les \bigcirc touches pour modifier la valeur du seuil. La plage pour le P4096 est de 1 Ω à 2400 Ω ; la plage pour le P4095 est de 1 Ω à 1100 Ω . Le réglage par défaut est de 50 Ω .

5. Les mesures de continuité se comportent comme suit :

P4096	P4095	Affichage et bip
≤ Court-circuit résistance	≤ Court-circuit résistance	Affiche la valeur mesurée et émet un signal acoustique (si activé)
Court-circuit- résistance jusqu'à ce que 2.4 kΩ	Court-circuit- résistance jusqu'à ce que 1.1 kΩ	Affiche la valeur mesurée sans signal acoustique (selon le réglage)
> 2,4 kΩ	> 1.1 kΩ	Indique "ouvert" sans signal

Test des diodes

Les étapes de la demande :

1. Activation du test des diodes

Appuyez trois fois sur le $\textcircled{0}{0}$ bouton du panneau avant pour activer le test des diodes.

2. Connectez les fils de test

3. Régler le buzzer

Appuyez sur la touche de fonction signal pour activer ou désactiver le signal sonore. Lorsque le buzzer est activé et que la diode est connectée, le multimètre émet un bip continu.

4. Le test de la diode se comporte comme suit :

P4096	P4095	Affichage et buzzer	
0 à 2 V	0 à 3 V	Indique la valeur de la tension mesurée et le multimètre émet un signal en dessous de 0,7 V (si le buzzer est actif).	
> 2 V	> 3 V	Indique "ouvert" sans signal sonore	

Mesure de la capacité

Les étapes de la demande :

1. Activer la mesure de la capacité.

Appuyez sur le (H) bouton du panneau avant pour activer la mesure de la capacité.

•	igger 占t		CAP Range Auto
16			
Danas	F	ur -	
Auto 200 uF		n	Rel

2. Connectez les fils de test

Conseil : Fermez brièvement les broches de connexion métalliques de chaque condensateur une fois avant le test pour le décharger.

3. Sélectionner la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Une protection d'entrée de 1000 V est disponible dans toutes les zones.
- P4096 : dépassement de 20 % pour toutes les plages de mesure, sauf 10000 μF.

P4095 : dépassement de 10 % pour toutes les plages de mesure, sauf 10000 $\mu F.$

 Si la valeur mesurée dépasse 10500µF dans la plage de mesure de 10000µF, "surcharge" s'affiche.

4. Valeur relative (application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesure de la fréquence et de la période

Lorsque vous mesurez une tension ou un courant alternatif, vous pouvez utiliser la fonction de double affichage pour obtenir la fréquence et la période du signal de mesure (voir page 35, Double affichage), ou appuyer sur pour **Freq** mesurer

directement la fréquence ou la période. Cette section décrit comment configurer les mesures de fréquence et de période.

Les étapes de la demande :

1. Activation de la mesure de la fréquence / période

Appuyez sur la **Freq** touche sur le panneau avant pour entrer dans le mode de mesure de la fréquence / période. Appuyez sur la touche logicielle Freq / Period pour passer de la fréquence à la période.

2. Connectez les fils de test

3. Sélectionner la gamme de mesure

Appuyez sur la touche logicielle de la gamme pour sélectionner la gamme de mesure. "Auto" sélectionne automatiquement la plage de mesure en fonction de la valeur d'entrée.

Un conseil :

- Plage de fréquence : P4096 est de 20 Hz à 1 MHz ; P4095 est de 20 Hz à 500 kHz.
- Plage de période : P4096 est de 0,05 s à 1 μ s ; P4095 est de 0,05 s à 2 μ s.
- Une protection d'entrée de 750 V est disponible dans toutes les zones.

4. Définir la valeur relative. (Opération avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relative.

Mesure de la température

Cette section décrit comment configurer les mesures de température. Les mesures de température nécessitent une sonde transductrice de température. Les sondes prises en charge sont les thermocouples de type B, E, J, K, N, R, S, T et les sondes RTD en platine PT100 et PT385.

Les étapes de la demande :

1. Activation de la fonction de mesure de la température

Appuyez sur le (Temp) bouton du panneau avant pour activer la mesure de la température.

2. Connectez les fils de test

3. Régler le capteur de température

Appuyez sur la touche de fonction Charge, puis sur $\overleftarrow{}$ pour basculer entre Thermocouple et ThermoRésistance. Appuyez ensuite sur pour passer à la liste. $\overleftarrow{}$ Sélectionnez la configuration appropriée à l'aide des touches. $\overleftarrow{}$ Appuyez maintenant sur la touche logicielle Set pour afficher la configuration ou directement sur la touche logicielle Done pour sélectionner ce capteur de température.

4. Régler l'affichage

Appuyez sur la touche logicielle d'affichage pour passer d'une option à l'autre.

Valeur de la température : seule la valeur de la température en °C, °F ou Kelvin est affichée.

Valeur mesurée : seule la valeur mesurée pure au niveau de la sonde de température est affichée en mVDC.

Tous : la valeur de température est affichée sur l'écran principal et la valeur mesurée mVDC est affichée simultanément sur l'écran secondaire.

5. Régler l'unité de température

Appuyez sur la touche logicielle Unité pour changer l'unité de mesure entre °C, °F ou Kelvin.

La conversion entre les unités de mesure résulte de :

9. Valeur relative (application avancée)

Appuyez sur la touche de fonction Rel pour activer ou désactiver le fonctionnement relatif. Pour le fonctionnement relatif, le multimètre soustrait la valeur spécifiée de l'opération REL du résultat de la mesure en cours et affiche le résultat. Voir page 41, Valeur relativ

Tableau d'affichage double

Grâce à la fonction de double affichage, vous pouvez afficher les valeurs mesurées de deux fonctions de mesure en même temps.

Primary function

Les étapes de la demande :

- 1. Appuyez sur l'un des boutons de fonction de mesure pour activer la fonction de mesure primaire.
- 2. Appuyez sur la Dual touche sur le panneau avant, la liste des fonctions secondaires s'affiche dans le menu de droite, sélectionnez la fonction souhaitée.
- 3. Lorsque le double affichage est activé, appuyez à nouveau **Dual** sur cette touche pour passer de la fonction principale à la fonction secondaire. Pour configurer la fonction secondaire, passez à la fonction primaire, configurez-la dans le menu de droite, puis revenez en arrière.
- 4. Appuyez sur l'une des touches de fonction de mesure pour désactiver le double affichage.

Les fonctions de mesure primaires et leurs mesures secondaires associées sont les suivantes : (la couleur de fond grise indique les combinaisons valides)

			Fonction de mesure primaire							
		DCV	DCI	ACV	ACI	FREQ	PERIOD E	2WR	4WR	САР
Fonction de mes	DCV									
	DCI									
	ACV									
	ACI									
	FREQ									
ure	PERIO									
e seconda	DE									
	2WR									
aire	4WR									
	САР									

Un conseil :

- Le multimètre effectue alternativement les mesures primaires et secondaires. La mise à jour des valeurs mesurées de la fonction de mesure primaire et secondaire s'effectue en conséquence.
- Si la mesure primaire utilise une mise à l'échelle en dB ou dBm, le double affichage ne peut pas être activé. Si le double affichage est activé, l'activation de la mise à l'échelle en dB ou dBm active automatiquement le double affichage.
- Lorsque le double affichage est activé, la fonction d'enregistrement manuel permet de stocker à la fois la lecture primaire et secondaire. La fonction d'enregistrement automatique ne peut sauvegarder que la lecture primaire.

Déclenchement

Le multimètre propose trois types de déclenchements : automatique, simple et externe.

Déclenchement automatique

Appuyez sur le **Port** bouton du panneau avant, puis sur la touche logicielle de

déclenchement. Appuyez sur la touche de fonction source pour sélectionner Auto. Lorsque le déclenchement automatique est utilisé, l'instrument prend des mesures en continu et définit automatiquement un nouveau déclenchement lorsqu'une mesure est terminée.

Appuyez sur la touche de fonction de délai pour sélectionner Auto ou Manuel.

• Retard de la voiture

L'appareil détermine automatiquement le délai en fonction de la fonction, de la plage et de la vitesse de mesure.

Retard manuel

Le premier échantillon commence un temps de retard après le déclenchement. Le deuxième échantillon commence un intervalle après le début du premier échantillon et ainsi de suite.

Trigger

Définissez le délai de déclenchement : Appuyez sur la touche de sélection du délai et sélectionnez Manuel. Appuyez ensuite sur les () touches pour déplacer le curseur et sur la toucheb pour régler la valeur du délai de 1 ms à 999,999 ms.

Définissez le nombre d'échantillons : Le multimètre effectue le nombre d'échantillons défini ici lorsqu'un déclencheur est déclenché. Appuyez sur la touche logicielle SamplesTrigger, puis sur les touches pour () déplacer le curseur. Appuyez ensuite sur les touches pour

Gâchette unique

Appuyez sur le **Port** bouton du panneau avant, puis sur la touche logicielle de déclenchement. Appuyez ensuite sur la touche de fonction source pour sélectionner Simple. Lorsque le déclencheur unique est utilisé, l'instrument prend un nombre quelconque de lectures chaque fois que la touche **Stop** est pressée.

- Le retard automatique est appliqué pour les déclenchements uniques, l'unité détermine automatiquement le retard en fonction de la fonction, de la plage et de la vitesse de mesure.
- Vous pouvez également modifier les échantillons dans le déclencheur unique. Le multimètre effectue le nombre d'échantillons défini ici lorsqu'un déclencheur est déclenché. Appuyez sur la touche logicielle SamplesTrigger, puis sur les ()
 touches pour déplacer le curseur. Appuyez ensuite sur les ()
 touches pour déplacer le curseur. Appuyez ensuite sur les ()

Déclenchement externe Port

Appuyez sur la touche de port sur le panneau avant, puis sur la touche logicielle de déclenchement. Appuyez ensuite sur la touche de fonction source pour sélectionner "Externe". Lorsque le déclenchement externe est utilisé, le multimètre reçoit l'impulsion de déclenchement du port [Ext Trig] sur le panneau arrière et se déclenche sur le front spécifié du signal d'impulsion et acquiert les données de mesure.

- Le retard automatique est appliqué pour les déclenchements uniques, l'unité détermine automatiquement le retard en fonction de la fonction, de la plage et de la vitesse de mesure.
- Lors de l'utilisation d'un déclencheur externe, vous pouvez définir le type de front de l'impulsion à partir du connecteur [Ext Trig] situé à l'arrière. Le multimètre se déclenchera sur le front spécifié. Appuyez sur la touche logicielle Trg Edge pour sélectionner Rising ou Falling.

Fonctions mathématiques ématiques

Le multimètre offre ces fonctions mathématiques : Statistiques, limites, dB / dBm et relatif.

Statistics

La statistique calcule le minimum, la moyenne, le maximum, l'étendue, l'écart type et le nombre de lectures pendant la mesure.

Appuyez sur la (Math) touche et ensuite sur la touche logicielle des statistiques. Appuyez à nouveau sur la touche logicielle des statistiques pour passer aux affichages. Désormais, les valeurs statistiques supplémentaires sont affichées dans un écran supplémentaire :

Remarques

- La valeur du span résulte de la valeur max moins la valeur min.
- Appuyez sur la touche logicielle de suppression des valeurs pour supprimer les valeurs statistiques et recommencer.

Valeurs limites

Le contrôle des limites indique combien d'échantillons ont dépassé les limites spécifiées et indique que le résultat du contrôle du signal a dépassé les limites spécifiées. Le connecteur [AUX Output] du panneau arrière peut être configuré pour émettre une impulsion lorsque les limites sont dépassées (voir page 49, Output).

Appuyez sur la (Math) touche et ensuite sur la touche logicielle de limite pour passer au menu de limite.

• Appuyez sur la touche logicielle de limite pour activer l'affichage de la limite.

- Utilisez la touche logicielle high ou low pour spécifier les limites en tant que limites supérieures ou inférieures. Appuyez à nouveau sur la touche logicielle pour basculer entre le centre et l'étendue. Cela vous donne la possibilité de spécifier un point de consigne (centre) et une plage de valeurs autour de ce point de consigne. Par exemple : une limite inférieure de -5 V et une limite supérieure de +10 V sont équivalentes à une valeur centrale de 2,5 V et à une plage de 15 V. Lors du réglage des paramètres, utilisez les touches comme d'habitude pour valeur.
- Appuyez sur la touche logicielle de suppression pour effacer toutes les valeurs mesurées et relancer l'enregistrement des valeurs limites.

Affichage de la valeur limite : La couleur de fond rouge (voir ci-dessous) indique que la mesure affichée dépasse les valeurs limites et le multimètre émet un bip (si le buzzer est activé).

DB / dBm

Les fonctions de mise à l'échelle en dB et dBm s'appliquent uniquement aux mesures ACV et DCV. Ces fonctions vous permettent de mettre les mesures à l'échelle par rapport à une valeur de référence.

Appuyez sur la (Math) touche et ensuite sur la touche logicielle dB/dBm pour accéder au menu.

• Fonction dBm

La fonction dBm représente la valeur absolue de la puissance. La fonction calcule la puissance de la résistance de référence en fonction de la tension mesurée, rapportée à 1 mW :

dBm = 10 x log10 (mesure2 / résistance de référence / 1 mW)

Appuyez sur la touche logicielle Ref R pour sélectionner la résistance de référence. La valeur peut être de 50, 75, 93, 110, 124, 125, 135, 150, 250, 300, 500, 600 (par défaut), 800, 900, 1000, 1200 ou 8000 Ω .

• Fonction dB

DB représente la valeur relative utilisée dans l'opération relative de la valeur dBm. Lorsqu'il est activé, le multimètre calcule la valeur dBm de la valeur mesurée et soustrait le dB prédéfini de cette valeur, puis affiche le résultat :

dB = 10 x Log10 (Valeur mesurée2 / Résistance de référence / 1 mW) - dB Préréglage

Appuyez sur la touche logicielle Ref R pour sélectionner la résistance de référence. La valeur peut être de 50, 75, 93, 110, 124, 125, 135, 150, 250, 300, 500, 600 (par défaut), 800, 900, 1000, 1200 ou 8000 Ω .

Appuyez sur la touche logicielle dB Ref value pour sélectionner la valeur relative. La valeur relative doit être comprise entre -120 et +120 dBm (par défaut 0).

Valeur relative

Lorsque le fonctionnement relatif est activé, la lecture affichée à l'écran est la différence entre la valeur mesurée et la valeur prédéfinie. La valeur est spécifique à la fonction en cours et demeure même si vous quittez cette fonction et y revenez ultérieurement. Vous pouvez donc utiliser cette fonction pour régler une mesure avec une référence relative à une valeur mesurée choisie par vous-même.

Valeur affichée = valeur mesurée - valeur préréglée

Dans la fonction de mesure souhaitée, appuyez d'abord sur le bouton REL pour activer cette fonction.

Appuyez sur la Math touche et ensuite sur la touche logicielle Rel pour définir la lecture prédéfinie souhaitée.

Afficher

Appuyez sur la Graph touche - sur le panneau avant pour accéder au menu, puis appuyez sur la touche logicielle d'affichage pour sélectionner l'affichage : nombre, baromètre, affichage des tendances ou histogramme.

Dans chaque type d'affichage, vous pouvez **Dual** appuyer sur le bouton du panneau avant et sélectionner la fonction secondaire. Par exemple, pour la fonction de mesure DCV, vous pouvez sélectionner ACV comme fonction de mesure secondaire. Voir page 35, Double affichage.

Numéro

Appuyez sur la Graph touche - de la face avant pour accéder au menu, puis

appuyez sur la touche de fonction d'affichage et sélectionnez Numéro. L'appareil affiche désormais les valeurs mesurées sous forme de valeur numérique. Il s'agit également du type d'affichage par défaut.

Barmeter

Appuyez sur la Graph touche - de la face avant pour accéder au menu, puis appuyez plusieurs fois sur la touche logicielle d'affichage pour sélectionner la fonction BarMeter. Cette mesure de barre ajoute une barre mobile sous l'affichage standard des chiffres.

Appuyez sur la touche logicielle de l'échelle pour sélectionner Standard ou Manuel.

Standard : Définit l'échelle pour correspondre à la gamme de mesure. Exemple : Pour la fonction de mesure du DCV, la plage -200 mV à 200 mV est définie lorsque la plage de mesure actuelle est de 200 mV.

Manuel : Définit l'échelle soit comme des valeurs hautes et basses, soit comme une plage autour d'une valeur centrale. Exemple : une échelle qui va d'une valeur basse (-50 mV) à une valeur plus élevée (100 mV) peut également être donnée comme un centre (25 mV) avec une étendue de 150 mV (2x75mV=150mV ; 25mV - 75mV = -50mV ; 25mV +75mV = 100mV).

Affichage des tendances

Appuyez sur la ^{Graph} touche pour ouvrir ce menu, puis sur la touche logicielle d'affichage pour passer à Tendance. L'affichage de la tendance montre des graphiques historiques des relevés pour permettre une meilleure observation de l'évolution des relevés.

Appuyez sur la touche logicielle Recent/All pour sélectionner les derniers relevés ou tous les relevés depuis le début.

Tout : Le graphique de tendance montre toutes les valeurs mesurées enregistrées et les construit de gauche à droite dans le graphique de progression. Une fois l'écran rempli, les données sont affichées compressées à gauche et les nouvelles données arrivent dans l'image par la droite.

Plus récent : le graphique de tendance ne montre que les données mesurées pendant la dernière minute.

Appuyez sur la touche logicielle d'échelle verticale pour régler l'échelle.

- Standard : Définit l'échelle pour correspondre à la gamme de mesure. Exemple : Pour la fonction de mesure du DCV, la plage -200 mV à 200 mV est définie lorsque la plage de mesure actuelle est de 200 mV.
- Manuel : Définit l'échelle soit comme des valeurs hautes et basses, soit comme une plage autour d'une valeur centrale. Exemple : une échelle qui va d'une valeur basse (-50 mV) à une valeur plus élevée (100 mV) peut également être donnée comme une valeur centrale (25 mV) avec une étendue de 150 mV (2x75mV=150mV ; 25mV - 75mV = -50mV ; 25mV +75mV =100mV).

Appuyez sur la touche logicielle Auto pour que l'échelle se règle automatiquement.

Auto : ajuste automatiquement l'échelle en fonction des valeurs de mesure actuelles afin que toutes les mesures soient affichées intégralement. Cette échelle ne change pas, même si des valeurs mesurées plus élevées sont enregistrées.

- Ensuite, appuyez à nouveau sur la touche logicielle auto pour régler automatiquement l'échelle verticale sur les nouveaux relevés.
- Ou appuyez sur la touche de fonction Supprimer les valeurs pour supprimer les relevés et commencer un nouveau graphique de tendance.

Histogrammem

Appuyez sur la Graph touche pour ouvrir ce menu, puis sur la touche d'affichage pour passer à Histogramme. Dans l'affichage de l'histogramme, les données mesurées sont classées dans différentes cases en fonction de leur fréquence d'apparition. Cela vous permet d'estimer la fréquence d'apparition de certaines valeurs mesurées.

- Appuyez sur la touche logicielle de division pour définir une division manuelle ou automatique des groupes de mesure.
- Appuyez sur la touche logicielle cumulative pour afficher une ligne auxiliaire pour l'affichage cumulatif de la distribution des valeurs mesurées.
- Appuyez sur la touche logicielle de suppression des valeurs pour supprimer les données de mesure affichées et commencer un nouveau graphique.

Classification des voitures

L'algorithme commence par réajuster continuellement l'étendue de l'histogramme, en fonction des mesures entrantes, afin de réintégrer complètement les données lorsqu'une nouvelle valeur en dehors de l'étendue actuelle apparaît. Le nombre de bins affichés est fonction du nombre de mesures reçues :

Nombre de mesures	< 100	100 - 500	500 - 1000	1000 - 5000	> 5000
Nombre de bacs	10	20	40	100	300

Division manuelle

Appuyez sur la touche logicielle de réglage de l'unité pour définir manuellement les paramètres de cette fonction :

- Appuyez sur la touche de fonction numérique pour définir manuellement le nombre de bacs sur 10, 20, 40, 100 ou 300.
- Vous pouvez spécifier la plage d'emplacements soit sous forme de valeurs basses et hautes, soit sous forme d'un intervalle autour d'une valeur centrale. Par exemple, la plage bin avec une valeur basse de -5 V et une valeur haute de 10 V pourrait également être spécifiée comme une valeur centrale de 2,5 V et une étendue de 15 V.

• Appuyez sur la touche logicielle de la boîte de page pour afficher ou masquer les bacs extérieurs. Les bacs extérieurs sont deux cases supplémentaires pour les mesures au-dessus et au-dessous de la plage du bac.

Enregistrement des données

La fonction d'enregistrement comprend l'enregistrement manuel et l'enregistrement automatique. Vous pouvez utiliser l'une des fonctions ou les deux pour enregistrer les données de mesure.

Enregistrement manuel : Appuyez sur la ^[Save] touche pour enregistrer la lecture actuelle dans la mémoire interne. Le nombre maximum de relevés est de 1000. Une fois la collecte des données terminée, vous pouvez les visualiser dans le tableau et les exporter vers la mémoire externe.

Enregistrement automatique : après avoir réglé la mémoire, le nombre de lectures, l'intervalle d'échantillonnage, appuyez sur la touche de fonction Démarrer pour lancer l'enregistrement. Vous pouvez afficher les données de la mémoire interne dans le tableau ou le graphique.

Enregistrement manuel

 Collecter des données : L'appareil mémorise la lecture actuelle chaque fois que l'on appuie manuellement sur le Save bouton. L'appareil émet un son et le symbole apparaît sur l'écran.

Remarque : la fonction de mesure peut être commutée lors d'un enregistrement manuel. Si le double affichage est activé, les deux valeurs mesurées peuvent être enregistrées.

2. Affichage de l'enregistrement manuel : Appuyez sur la Record touche et ensuite sur la touche logicielle Enregistrement manuel pour afficher le tableau des données des relevés enregistrés manuellement. Appuyez sur les touches pour faire défiler les pages.

Un conseil :

- Même lorsque vous vous trouvez dans le tableau de données, vous pouvez continuer à enregistrer les valeurs mesurées à l'aide de la <u>Save</u> touche, qui sont alors immédiatement affichées dans le tableau.
- Si une mesure dépasse la plage de mesure pendant l'enregistrement, l'information "surcharge" est enregistrée dans le tableau au lieu d'une valeur mesurée.
- Si vous enregistrez une valeur mesurée alors que la fonction de valeur relative est activée, l'information "rel" est également enregistrée dans le tableau.

		• Trigge	er		Record	
No.	1st Re	eading	2nd F	Reading	Clear	
1	ACV	012.188mV	Freq	2.49527KHz	cicar	
2	ACV	012.188mV	Freq	1.51575KHz		
3	ACV	012.188mV	Freq	1.51575KHz	Export	
4	ACV	012.188mV	Freq	1.51575KHz		
5	ACV	008.025mV	Freq	1.51575KHz		
6	DCV	-001.138mV	ACV	013.048mV		
7	DCV	-000.982mV	ACV	013.048mV		
8	DCV	-000.982mV	ACV	013.048mV		
9	DCV	-000.982mV	ACV	007.642mV		
Dual:						
-(-000.854 mVDC Auto 200 mV					

- 3. Exportation vers la mémoire USB : connectez une mémoire USB au port USB avant. Appuyez sur la touche logicielle d'exportation pour exporter l'enregistrement manuel de la mémoire interne vers la mémoire USB sous forme de fichier CSV. Le fichier est enregistré dans le dossier \Record\Manual de la mémoire USB. Le nom du fichier est Data_YYYMMDD_HHMMSS. YYYMMDD est la date de début de l'enregistrement et HHMMSS est l'heure de début, par exemple Data_20160804_095622.csv.
- **4. Supprimer l'enregistrement manuel :** Appuyez sur la touche de fonction Supprimer pour supprimer l'enregistrement manuel actuel.

Enregistrement automatique

- 1. Configurez les paramètres :
- Appuyez sur la Record touche , puis sur la touche de fonction Enregistrement automatique.
- Appuyez sur la touche logicielle de la mémoire pour sélectionner la mémoire interne ou externe.
- Appuyez sur la touche de fonction Points pour spécifier le nombre total de lectures à enregistrer. La plage est de 1 point à 1 million de points pour la mémoire interne, de 1 à 100 millions pour la mémoire externe.
- Appuyez sur la touche logicielle d'intervalle pour spécifier l'intervalle de temps entre les lectures. La plage est comprise entre 5 ms et 1000 s.
- 2. Démarrage de l'enregistrement : Appuyez sur la touche de fonction Démarrer pour lancer l'enregistrement automatique. L' icône apparaît en haut de l'écran. Appuyez sur la touche logicielle Stop pour arrêter l'enregistrement, les données sont sauvegardées sous forme de fichier CSV dans la mémoire spécifiée. Si la mémoire externe est sélectionnée, le fichier est enregistré dans le dossier \N Record \N Auto de la mémoire USB. Le nom du fichier est Data_YYYMMDD_HHMMSS. YYYMMDD est la date de début et HHMMSS est l'heure de début, par exemple Data_20160804_095622.csv.

Un conseil :

- Lorsque le mode d'enregistrement automatique est en cours, appuyez sur une autre touche de fonction de mesure. L'appareil affiche alors le message suivant : "Appuyez à nouveau sur la touche pour changer de fonction et arrêter l'enregistrement".
- Si vous souhaitez poursuivre l'enregistrement automatique, il suffit d'attendre que le message disparaisse.
- Si vous voulez arrêter l'enregistrement automatique et passer à la fonction, appuyez à nouveau sur la touche de fonction lorsque le message est encore affiché. Les données d'enregistrement avant la commutation de la fonction sont sauvegardées.
- Dans la gamme automatique, le commutateur de relais peut provoquer une gigue, les données à ce moment-là seront invalides. Cela prendra environ quelques centaines de millisecondes et les données acquises pendant cette période seront marquées comme "invalides".
- Lorsque le double affichage est activé, seule la lecture de la fonction d'affichage principal peut être sauvegardée.
- 3. Lire et afficher les données de mesure enregistrées : Appuyez sur la Record

touche et ensuite sur la touche logicielle d'affichage.

Actuellement, seul "Interne" peut être sélectionné pour la mémoire.

La touche logicielle d'affichage vous permet de basculer entre les options d'affichage **Graphique** et **Tableau.**

Appuyez sur la touche logicielle de lecture pour charger et afficher les données de la mémoire interne. (Pour l'affichage sous forme de tableau, utilisez les 🔅 touches pour tourner la page).

Enregistrement automatique des données sous forme de graphique

	 Trigger 		Record
No.	Function	Reading	Memory
6	DCV	13.882mV	Internal
7	DCV	9.077mV	Display
8	DCV	-915.125uV	Display
9	DCV	invalid	Table
10	DCV	10.524mV	
11	DCV	-907.103uV	
12	DCV	invalid	
13	DCV	10.298mV	
14	DCV	-891.694uV	Read
Dual: 009.	687 mVAC		
-000.8	393 mVDC	Auto 200 mV	Back

Enregistrement automatique des données sous forme de tableau

Configuration du port

Série

Appuyez sur la <u>Port</u> touche et ensuite sur la touche logicielle série pour ouvrir le menu de réglage du port série.

Appuyez sur la touche logicielle Baud pour régler la vitesse de transmission sur 1200, 2400, 4800, 9600, 19200, 38400, 57600 ou 115200, 9600 étant le réglage d'usine. Assurez-vous que le débit en bauds correspond à celui du PC.

Appuyez sur la touche logicielle bits de données pour modifier le réglage sur 5, 6, 7 ou 8.

Appuyez sur la touche logicielle Odd-Even pour modifier la parité en None, Odd ou Even. La valeur par défaut est Aucun.

Appuyez sur la touche logicielle Bit d'arrêt, sélectionnez le bit d'arrêt parmi 1, 2.

Déclencheur

Voir page 38

Déclenchement .

Sortie

Appuyez sur la **Port** touche et ensuite sur la touche logicielle de sortie pour accéder au menu des paramètres du port de sortie.

Appuyez sur la touche logicielle de sortie pour modifier la configuration de la [**Sortie AUX**] à l'arrière de l'appareil.

• FaitS

Émet une impulsion lorsque le multimètre prend une mesure afin que vous puissiez le signaler à d'autres appareils. Appuyez sur la touche logicielle de sortie pour régler le bord de la sortie sur positif ou négatif.

P/F

La sortie [**AUX Output**] peut être configurée de manière à ce qu'un signal soit toujours émis lorsque les limites de réussite/échec de la fonction mathématique sont dépassées.

Type de filet

Appuyez sur la **Port** touche et ensuite sur la touche logicielle Net Type pour modifier le paramètre réseau sur OFF ou LAN.

Paramètres LAN

Appuyez sur la touche logicielle Paramètres LAN pour modifier l'adresse IP, le masque de sous-réseau, la passerelle ou le port.

Appuyez sur pour déplacer (\Im) le curseur et sur les boutons pour régler les valeurs. Redémarrez l'appareil pour appliquer les paramètres.

Si nécessaire, demandez à votre administrateur réseau des détails sur les paramètres.

Hommes d'utilitéü

Langue

Appuyez sur la Utility touche et ensuite sur la touche logicielle de langue pour changer la langue du menu.

Éclairage

Appuyez sur la Utility touche puis sur la touche programmable d'éclairage pour modifier la luminosité de l'écran.

RTC - Horloge en temps réel

Appuyez sur la Utility touche et ensuite sur la touche logicielle RTC. Ce menu affiche l'heure et la date, toujours au format 24 heures (00:00:00 à 23:59:59).

Appuyez sur la touche logicielle Setup pour modifier l'heure et la date. Utilisez les touches pour déplacer le curseur et les touches pour Appuyez sur la touche de fonction Terminé pour enregistrer les paramètres.

SCPI

Appuyez sur la Utility touche et ensuite sur la touche logicielle SCPI pour activer le protocole d'interface souhaité.

Paramètres standard

Appuyez sur (Utility) et ensuite sur la touche de fonction standard pour réinitialiser l'appareil aux paramètres d'usine. La fonction de mesure du DCV est automatiquement activée.

Paramètres d'usine

	Paramètre	Préréglage	
		Plage de mesure	Voiture
	DCV	Taux de mesure	Faible
		Filtre	De
		Entrée Z	10M
		Rel	De
Fonction de		Plage de mesure	Voiture
mesure	ACV	Taux de mesure	Faible
		Rel	De
		Plage de mesure	Voiture
	DCI	Taux de mesure	Faible
		Filtre	De
		Rel	De

	Paramètre		Préréglage
		Plage de mesure	Voiture
	ACI	Taux de mesure	Faible
		Rel	De
		Plage de mesure	Voiture
	Ω2W/Ω4W	Taux de mesure	Faible
		Ω 2W/Ω 4W	Ω 2W
		Rel	De
	Cont	Été	А
	Cont	Seuil	50Ω
	Diode	Été	A
	САР	Plage de mesure	Voiture
		Rel	De
	Fréq	Plage de mesure	Voiture
		Fréquence/péri ode	Fréq
		Rel	De
		Туре	KITS90
	Temp	Afficher	Tous
	Tomp	Unité	К
		Rel	De
Mathématiqu es	Statistique s	Afficher/Masqu er	Caché
		Limites	De

	Paramètre		Préréglage
		Haut	2V/2A/2K Q /2uF/2Hz/2s/2k °C
		Deep	0V/0A/0KΩ/0uF/0Hz/0s/0k °C
	Valeurs limites	Centre	1V/1A/1KΩ/1uF/1Hz/1s/1k °C
		Portée	2V/2A/2KΩ/2uF/2Hz/2s/2k °C
		Pass/Fail	Passeport
	dB/dBm	On/Off	De
		Fonction	dBm
		Réf R	50Ω
		dB Valeur de référence	0 dBm
	Rel	1	0 V
	Été		A
Litilitaire	Éclairage		50%
Jundie	SCPI		8845
		Baud	115200
Dest	Série	Bits de données	8
Port		Odd-Even	Aucun
		Bit d'arrêt	1
		Source :	Voiture

Paramètre			Préréglage
		Délai	Voiture
	Déclenche	Délai Temps	0 s
	ur	Déclenchemen t des échantillons	1
	Sortio	Sortie	FaitS
	Some	Flanc	Positif
		IP	192.168.001.099
		Masque de sous-réseau	255.255.255.000
	NET Туре	Passerelle	192.168.001.001
		Adresse physique	000fea36ea46
		Port	3000
		Net	De
	Afficher		Numéro
	Compteur de barres	Échelle	Standard
Graphique	Tendance	Récent / Tous	Récent
	Histogram	Division	Voiture
	me	Cumulatif	De
		Mémoire	Interne
	Enregistre	Points	1000
Dossier	automatiqu	Intervalle	1 s
	е	Démarrage/Arr êt	Stop
	Voir	Afficher	Graphique

Informations sur le système

Appuyez sur \rightarrow Suivant $\underbrace{(Utility)}$ \rightarrow Infos système pour afficher le modèle, la version du micrologiciel, le numéro de série et la somme de contrôle.

Mise à jour du micrologiciel

Utilisez le port USB situé à l'avant pour mettre à jour le micrologiciel de votre appareil à l'aide d'un dispositif de mémoire USB.

Configuration requise pour le périphérique de stockage USB : Cet appareil prend en charge un périphérique de stockage USB avec un système de fichiers FAT32 ou FAT16. Si le périphérique de stockage USB ne fonctionne pas correctement, formatez-le au format FAT32 ou FAT16 et réessayez. Ou essayez un autre périphérique de stockage USB.

Attention : la mise à jour du micrologiciel de l'appareil est une application sensible. Pour éviter d'endommager l'appareil, n'éteignez jamais l'appareil et ne retirez jamais la clé USB pendant le processus de mise à jour.

Effectuez une mise à jour du micrologiciel comme suit :

- Appuyez sur (Utility) → Suivant → Infos système pour afficher le modèle, le numéro de série et la version du micrologiciel.
- Depuis un PC, visitez le site www. peaktech.de et vérifiez si le site propose une version plus récente du micrologiciel. Ensuite, téléchargez le fichier du micrologiciel. Le nom du fichier doit être DMMFW.upp. Copiez le fichier du microprogramme dans le répertoire racine du périphérique de stockage USB.
- Insérez le dispositif de mémoire USB dans le port USB situé sur le panneau avant de votre instrument. Lorsque l' icône apparaît en haut à droite de l'écran, le périphérique de stockage USB a été installé avec succès.
- Appuyez sur (Utility) → Suivant → Infos système, puis sur la touche de fonction Mise à jour du micrologiciel.
- L'appareil affiche un message indiquant que vous ne devez pas retirer le périphérique USB ni éteindre l'appareil avant la fin du processus de mise à jour. La barre de progression de l'écran indique que le processus de mise à jour est en cours.

Remarque : une mise à jour du micrologiciel prend généralement environ une minute. Ne retirez pas le périphérique de stockage USB pendant le processus de mise à jour. Si vous retirez accidentellement le périphérique de stockage

USB pendant le processus de mise à jour, n'éteignez pas l'appareil. Répétez le processus d'installation à partir de l'étape 3.

6. Attendez que l'appareil affiche "Firmware upgrade success" et redémarre automatiquement.

Remarque : si le message de fonctionnement ne s'affiche pas, n'éteignez pas l'appareil. Répétez la procédure d'installation à partir de l'étape 2 avec un autre dispositif de mémoire USB. Retirez ensuite le dispositif de mémoire USB de l'appareil.

 Appuyez sur →Suivant Utility →Info système et vérifiez la version du micrologiciel pour vous assurer que cette mise à jour a été effectuée correctement.

Test LCD

Effectue une vérification automatique de l'écran LCD.

Appuyez sur \bigcirc \bigcirc Suivant \rightarrow Test de l'écran LCD pour activer la fonction.

Appuyez sur la touche de fonction supérieure pour faire défiler les différentes couleurs rouge, verte et bleue et observez si l'affichage présente des problèmes. Appuyez sur la touche de fonction inférieure pour quitter la fonction.

Test du clavier

Effectuez un contrôle des boutons poussoirs de l'appareil.

Appuyez sur \rightarrow Suivant $(Utility) \rightarrow$ Test de la carte pour activer la fonction. Chaque

forme de l'écran représente l'un des boutons poussoirs de l'unité. Appuyez sur n'importe quel bouton du panneau avant et la forme correspondante sur l'interface de test devient verte. Appuyez sur la touche de fonction retour pour quitter le test.

4. Tutoriel sur les mesures

Erreur de charge (tension CC)

Les erreurs de charge de mesure se produisent lorsque la résistance du DUT (Device-Under-Test) représente un pourcentage appréciable de la résistance d'entrée du multimètre, comme illustré ci-dessous :

Vs = Tension idéale du DUT

Rs = Résistance de la source de l'objet sous test

Ri = Résistance d'entrée du multimètre (10 M Ω ou >10 G Ω)

$$\text{Erreur} \quad (\%) = \frac{100 \times \text{R}_{\text{s}}}{\text{R}_{\text{s}} + \text{R}_{\text{i}}}$$

Pour réduire les effets des erreurs de charge et minimiser les interférences, réglez la résistance d'entrée du multimètre sur 10 G Ω pour les plages 200 mVDC et 2 VDC. La résistance d'entrée est automatiquement réglée à 10 M Ω pour les plages 20 Vcc, 200 Vcc et 1000 Vcc.

Mesures AC RMS réelles

La mesure du courant alternatif du multimètre est réellement efficace. La puissance dissipée dans une résistance est proportionnelle au carré d'une tension appliquée, quelle que soit la forme d'onde du signal. Ce multimètre mesure avec précision la tension ou le courant réels tant que la forme d'onde contient une énergie négligeable au-dessus de la bande passante effective du compteur.

La largeur de bande de la tension alternative effective du multimètre est de 100 kHz, tandis que la largeur de bande du courant alternatif effectif est de 10 kHz.

Forme d'onde	Facteur de crête (F.C.)	AC RMS	AC+DC RMS
	$\sqrt{2}$	$\frac{V}{\sqrt{2}}$	$\frac{V}{\sqrt{2}}$
	$\sqrt{3}$	$\frac{V}{\sqrt{3}}$	$\frac{V}{\sqrt{3}}$
V $-$ 0 $-$ (cycle d'utilisation de 50 %)	1	V C.F.	V C.F.

Les fonctions de courant alternatif et de tension alternative du multimètre mesurent la valeur " vraie RMS " (TrueRMS) couplée au courant alternatif et seule la valeur RMS des composantes alternatives de la forme d'onde d'entrée est mesurée (le courant continu est écarté). Comme le montre la figure ci-dessus, les valeurs de couplage CA et CA + CC sont les mêmes pour les ondes sinusoïdales, les ondes triangulaires et les ondes carrées, car ces formes d'onde ne contiennent pas de décalage CC. Cependant, pour les formes d'onde non symétriques (par exemple, les trains d'impulsions), il existe un contenu de courant continu qui n'est pas pris en compte par les mesures TrueRMS couplées au courant alternatif du multimètre.

La mesure TrueRMS à couplage AC est particulièrement adaptée à la mesure de petits signaux AC en présence d'importants décalages DC. Par exemple, cette situation se présente généralement lors de la mesure de l'ondulation AC présente dans les alimentations DC. Cependant, il y a des situations où vous voulez connaître la valeur TrueRMS AC + DC. Vous pouvez déterminer cette valeur en

combinant les résultats des mesures en courant continu et en courant alternatif, comme indiqué ci-dessous :

$$ac + dc = \sqrt{ac^2 + dc^2}$$

Pour obtenir la meilleure réjection du bruit alternatif, vous devez sélectionner une faible fréquence de mesure pour obtenir une résolution de 5½ chiffres lors de la mesure du courant continu.

Erreur de charge (tension CA)

Dans la fonction CA, l'impédance d'entrée du multimètre apparaît comme une résistance de 1 M Ω en parallèle avec une capacité de 100 pF. Le câblage que vous utilisez pour connecter les signaux au multimètre ajoute également une capacité et une charge. Le tableau suivant indique l'impédance d'entrée approximative du multimètre à différentes fréquences.

Fréquence d'entrée	Résistance d'entrée
100 Hz	1 ΜΩ
1 kHz	850 kΩ
10 kHz	160 kΩ
100 kHz	16 kΩ

Aux basses fréquences, l'erreur de charge :

Erreur (%) =
$$\frac{-100 \times R_s}{R_s + 1 M\Omega}$$

Aux hautes fréquences, l'erreur de charge supplémentaire :

Erreur (%) = 100 ×
$$\left[\frac{1}{\sqrt{1 + (2\pi \times F \times R_S \times C_{in})^2}} - 1\right]$$

Rs = résistance au gonflement

F = Fréquence d'entrée

cin = capacité d'entrée (100 pF) plus capacité de ligne

5. Dépannage

1.

L'appareil est allumé mais aucun affichage n'apparaît.

1) Vérifiez que l'appareil est correctement connecté.

2) Vérifiez que le sélecteur de tension du secteur est sur le bon réglage de tension.

3) Vérifiez que le fusible secteur situé

sous la prise de connexion de la fiche secteur est OK (voir page 68, Annexe C : Fusible secteur).

4) Redémarrez l'instrument en suivant les étapes ci-dessus.

5) Si le problème persiste, veuillez contacter le service après-vente de PeakTech.

2. la valeur mesurée ne change pas lorsqu'un signal de courant est entré.

1) Vérifiez que le fil d'essai est correctement inséré dans la prise d'entrée de courant.

(prise I et borne d'entrée LO) est branché.

2) Vérifiez si le fusible d'alimentation situé sur le panneau avant a sauté.

Voir le numéro 7 "Porte-fusible" dans la description du panneau avant sur le site Web de l'entreprise.

Page 9.

3) Vérifiez si la fonction de mesure DCI ou ACI est activée.

4) Vérifiez si la fonction de mesure de l'ICD a été utilisée par inadvertance pour mesurer une

Le courant alternatif ACI est utilisé.

Si vous rencontrez d'autres problèmes, essayez d'abord de réinitialiser l'appareil aux paramètres d'usine ou de le redémarrer. Si cela ne fonctionne toujours pas correctement, veuillez contacter le service de PeakTech et fournir les informations sur votre unité. (Utility \rightarrow Suivant \rightarrow Info système)

6. Spécifications techniques

P4096 Spécifications

Précision : ± (% de la valeur mesurée + % de la plage de mesure) ^{[1].}						
Fonction	Plage de mesure ^[2]	Gamme de fréquences ou courant d'essai	Précision : 1 an @ 23℃±5℃	Coefficient de température 0℃ - 18℃ 28℃ - 50℃		
	200 mV			0.0015 + 0.0005		
	2 V			0.0010 + 0.0005		
Voltage DC	20 V	/	0.015±0.004	0.0020 + 0.0005		
	200 V			0.0015 + 0.0005		
	1000 V ^[3]			0.0015 + 0.0005		
_		20 Hz - 45 Hz	1.5 + 0.10	0.01 + 0.005		
True RMS		45 Hz - 20 kHz	0.2 + 0.05	0.01 + 0.005		
Tension CA ^[4]	200mv, 2v, 20v, 200v, 750v	20 kHz - 50 kHz	1.0 + 0.05	0.01 + 0.005		
		50 kHz - 100 kHz	3.0 + 0.05	0.05 + 0.010		
	200 000 µA		0.055 + 0.005	0.003 + 0.001		
	2,00000 mA	/	0.055 + 0.005	0.002 + 0.001		
Courant	20.0000 mA		0.095 + 0.020	0.008 + 0.001		
continu	200 000 mA		0.070 + 0.008	0.005 + 0.001		
	2.00000 A		0.170 + 0.020	0.013 + 0.001		
	10.0000 A ^[5]		0.250 + 0.010	0.008 + 0.001		
True RMS		20 Hz - 45 Hz	1.5 + 0.10	0.015 + 0.005		
Courant	20.0000 mA, 200.000 mA,	45 Hz - 2 kHz	0.50 + 0.10	0.015 + 0.005		
alternatif ^[6]	2.00000 A, 10.0000 A **	2 kHz - 10 kHz	2.50 + 0.20	0.015 + 0.005		
	200.000 Ω	1 mA	0.030 + 0.005	0.0030 + 0.0006		
	2.00000 kΩ	1 mA	0.020 + 0.003	0.0030 + 0.0005		
	20.0000 kΩ	100 µA	0.020 + 0.003	0.0030 + 0.0005		
Résistance ^{[7}	200 000 kΩ	10 µA	0.020 + 0.003	0.0030 + 0.0005		
	2.00000 ΜΩ	1 μΑ	0.040 + 0.004	0.0040 + 0.0005		
	10.0000 MΩ	200 nA	0.250 + 0.003	0.0100 + 0.0005		
	100 000 MΩ	200 nA 10 MΩ	1.75 + 0.004	0.2000 + 0.0005		
Test des diodes	2.0000 V ^[8]	1 mA	0.05 + 0.01	0.0050 + 0.0005		
Passage	2000 Ω	1 mA	0.05 + 0.01	0.0050 + 0.0005		
Fréquence	200 mV à 750 V ^[9]	20 Hz - 2 kHz	0.01 + 0.003	0.002 + 0.001		

/période		2 kHz - 20 kHz	0.01 + 0.003	0.002 + 0.001	
		20 kHz - 200 kHz	0.01 + 0.003	0.002 + 0.001	
		200 kHz - 1 MHz	0.01 + 0.006	0.002 + 0.002	
		20 Hz - 2 kHz	0.01 + 0.003	0.002 + 0.001	
		2 kHz - 10 kHz	0.01 + 0.003	0.002 + 0.001	
	2 000 nF	200 nA	3 + 1.0	0.08 + 0.002	
	20,00 nF	200 nA	1 + 0.5	0.02 + 0.001	
Capacitá [10]	200,0 nF	2 μΑ	1 + 0.5	0.02 + 0.001	
Capacite	2 000 µF	10 µA	1 + 0.5	0.02 + 0.001	
	200 µF	100 µA	1 + 0.5	0.02 + 0.001	
	10000 µF	1 mA	2 + 0.5	0.02 + 0.001	
Température	Les capteurs de température de 2 catégories sont pris en charge - thermocouple (conversion ITS-90 entre le type B / E / J / K / N / R / S / T) et résistance thermique (conversion de capteur RTD entre le type PT100 et PT385).				

[1] Les spécifications sont valables pour un préchauffage de 30 minutes, un taux de mesure " faible " et une température d'étalonnage de 18 °C à 28 °C.

[2] 20% sur la gamme sur toutes les gammes sauf 1 000 V DCV, 750 ACV, 10 A DCI, 10 A ACI, résistance de 100 MΩ et capacité de 10000 μF.

[3] Pour chaque volt supplémentaire au-dessus de ± 500 VDC, ajouter 0,02 mV d'erreur.

[4] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5% de la plage. Pour les entrées de 1% à

5% de la gamme et <50 kHz, ajouter 0,1% de la gamme comme erreur supplémentaire. Pour 50 kHz à 100 kHz, ajoutez

0,13% de la gamme comme erreur supplémentaire.

[5] Il est recommandé d'éteindre l'appareil toutes les 30 secondes et de le rallumer après 30 secondes pour un courant continu supérieur à 7 A en courant continu ou 7 A en courant alternatif efficace.

[6] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5 % de la plage. Une erreur de 0,1 % est ajoutée lorsque la plage d'entrée sinusoïdale est comprise entre 1 % et 5 %.

[7] Les spécifications sont valables pour la fonction ohm à 4 fils ou ohm à 2 fils avec fonction relative active. Sans fonctionnement relatif, ajoutez \pm 0,20 Ω d'erreur supplémentaire dans la fonction ohm à 2 fils.

[8] Les spécifications s'appliquent à la tension mesurée aux bornes d'entrée. Le courant de test de 1 mA est typique. Une variation de la source de courant produira un changement dans la chute de tension à travers une jonction de diode.

[9] En dehors des spécifications distinctes, la tension d'entrée alternative est de 15 % à 120 % de la plage à ≤100 kHz et de 30 % à 120 % de la plage à> 100 kHz. 750 V est limité à 750 Vrms.

[10] Les spécifications s'appliquent à l'utilisation de la fonction de valeur relative. L'utilisation d'un condensateur non bobiné peut introduire des erreurs supplémentaires. Les spécifications sont de 1% à 120% sur la gamme 2 nF et de 10% à 120% sur les autres gammes.

Spécifications du P4095

		Gamme de	Précision :
Fonction	Gamme ^[2]	fréquences ou	1 an
		courant d'essai	23℃±5℃
	600 mV		
	6 V		
Voltage DC	60 V	/	0.02±0.01
	600 V		
	1000 V ^[3]		
	600mV, 6V, 60V, 600V, 750V	20 Hz - 45 Hz	2 + 0.10
True RMS		45 Hz - 20 kHz	0.2 + 0.06
Tension CA ^[4]		20 kHz - 50 kHz	1.0 + 0.06
		50 kHz - 100 kHz	3.0 + 0.08
	600,00 µA		0.06 + 0.02
	6.0000 mA		0.06 + 0.02
Courant	60 000 mA		0.1 + 0.05
continu	600,00 mA	/	0.2 + 0.02
	6.0000 A		0.2 + 0.05
	10.000 A ^[5]		0.250 + 0.05
True RMS		20 Hz - 45 Hz	2 + 0.10
Courant	60.000 mA, 600.00 mA,	45 Hz - 2 kHz	0.50 + 0.10
alternatif ^[6]	6.000 A, 10.000 A ¹⁰	2 kHz - 10 kHz	2.50 + 0.20
	600.00 Ω	1 mA	0.040 + 0.01
	6.0000 kΩ	1 mA	0.030 + 0.01
	60 000 kΩ	100 µA	0.030 + 0.01
Résistance [7]	600.00 kΩ	10 µA	0.040 + 0.01
	6.0000 MΩ	1 μΑ	0.120 + 0.03
	60 000 ΜΩ	200 nA 10 MΩ	0.90 + 0.03
	100.00 MΩ	200 nA 10 MΩ	1.75 + 0.03
Test des	2 0000 1/ [8]	1	0.05 + 0.01
diodes	5.0000 V		0.05 + 0.01
Test de	1000 0	1 mA	0.05 + 0.01
passage			
Fréquence/ période	600 mV à 750 V ^[9]	20 Hz - 2 kHz	0.01 + 0.003
		2 kHz - 20 kHz	0.01 + 0.003
		20 kHz - 200 kHz	0.01 + 0.003
		200 kHz - 1 MHz	0.01 + 0.006
	60 mA à 10 A	20 Hz - 2 kHz	0.01 + 0.003

Précision : ± (% de la valeur mesurée + % de la plage de mesure) [1].

		2 kHz - 10 kHz	0.01 + 0.003
Capacité ^[10]	2 000 nF	200 nA	3 + 1.0
	20,00 nF	200 nA	1 + 0.5
	200,0 nF	2 μΑ	1 + 0.5
	2 000 µF	10 µA	1 + 0.5
	200 µF	100 µA	1 + 0.5
	10000 µF	1 mA	2 + 0.5
Température	Les capteurs de température de 2 catégories sont pris en charge - thermocouple (conversion ITS-90 entre le type B / E / J / K / N / R / S / T) et résistance thermique (conversion de capteur RTD entre le type PT100 et PT385).		

[1] Les spécifications sont valables pour un préchauffage de 30 minutes, un taux de mesure " faible " et une température d'étalonnage de 18 °C à 28 °C.

[2] 10% sur la gamme sur toutes les gammes sauf 1 000 V DCV, 750 ACV, 10 A DCI, 10 A ACI, résistance de 100 MΩ et capacité de 10000 μF.

[3] Pour chaque volt supplémentaire au-dessus de ± 500 VDC, ajouter 0,02 mV d'erreur.

[4] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5% de la plage. Pour les entrées de 1% à 5% de la gamme et <50 kHz, ajouter 0,1% de la gamme comme erreur supplémentaire. Pour 50 kHz à 100 kHz, ajoutez 0,13% de la gamme comme erreur supplémentaire.</p>

[5] Il est recommandé d'éteindre et de rallumer l'appareil toutes les 30 secondes pour un courant continu supérieur à 7 A CC ou 7 A CA RMS.

[6] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5 % de la plage. Une erreur de 0,1 % est ajoutée lorsque la plage d'entrée sinusoïdale est comprise entre 1 % et 5 %.

[7] Les spécifications sont valables pour la fonction ohm à 4 fils ou ohm à 2 fils avec fonction de valeur relative active.

Sans fonctionnement relatif, ajoutez \pm 0,20 Ω d'erreur supplémentaire dans la fonction ohm à 2 fils.

[8] Les spécifications s'appliquent à la tension mesurée aux bornes d'entrée. Le courant de test de 1 mA est typique. Une variation de la source de courant produira un changement dans la chute de tension à travers une jonction de diode.

[9] En dehors des spécifications distinctes, la tension d'entrée alternative est de 15 % à 110 % de la plage à ≤100 kHz et de 30 % à 110 % de la plage à> 100 kHz. 750 V est limité à 750 Vrms. Si la plage de mesure de la tension alternative est de l'ordre de 600 mV, multipliez le % d'erreur de lecture par 10.

[10] Les spécifications s'appliquent à l'utilisation de la fonction de valeur relative. L'utilisation d'un condensateur non bobiné peut produire des erreurs supplémentaires. Les spécifications sont de 1% à 110% sur la gamme 2 nF et de 10% à 110% sur les autres gammes.

P4094 Spécifications

	Precision : ± (%	% de la valeur mes	uree + % de la plage de mesure)
Fonction	Gamme ^[2]	Résolution	Précision : ± (% de la lecture + chiffes)
Voltage DC	50 000 mV	0,001 mV	0.1% + 10
	500,00 mV	0,01 mV	0.025% + 5
	5.0000 V	0.0001 V	0.025% + 5
	50.000 V	0.001 V	0.03% + 5
	500.00 V	0.01 V	0.1% + 5
	1000.0 V ^[3]	0.1 V	0.1% + 5
		20 Hz - 45 Hz	1% + 30
Tension AC	500 mV - 750 V	45 Hz - 65 Hz	0.5% + 30
RMS réelle ^[4]		65 Hz - 1 kHz	0.7% + 30
Courant continu	500 uA	0,01 uA	0.15% + 20
	5000 uA	0,1 uA	0.15% + 10
	50 mA	0,001 mA	0.15% + 20
	500 mA	0,01 mA	0.15% + 10
	5 A	0.0001 A	0.5% + 10
	10 A ^[5]	0.001 A	0.5% + 10
0	500 uA - 500 mA	1	0.5% + 20
RMS réel ^[6]	5 A - 10 A	7	1.5% + 20
Résistance ^[7]	500 Ω	0.01 Ω	0.1% + 10
	5 kΩ	0.0001 kΩ	0.1% + 5
	50 kΩ	0.001 kΩ	0.1% + 5
	500 kΩ	0.01 kΩ	0.1% + 5
	5 ΜΩ	0.0001 MΩ	0.25% + 5
	50 ΜΩ	0.001 MΩ	1% + 10
	500 Ω	0.01 Ω	0.1% + 10

Précision : ± (% de la valeur mesurée + % de la plage de mesure) ^{[1].}

Résistance de	5 kΩ	0.0001 kΩ	0.1% + 5
mesure à quatre fils	50 kΩ	0.001 kΩ	0.1% + 5
Diode	3.0000 V	0.0001 V	/
Passage - test	1000 Ω	0.1 Ω	/
Fréquence	10 000 Hz - 60 MHz ^[8]	/	± (0.2% + 8)
Capacité ^[9]	50 nF - 500 uF	/	2.5% + 5
	5 mF - 50 mF		5% + 8
Température	Type K, PT100		
Afficher	55,000		
Enregistrement par intervalles	15 mS - 9999.999 S		

[1] Les spécifications sont valables pour un préchauffage de 30 minutes, un taux de mesure " faible " et une température d'étalonnage de 18 °C à 28 °C.

[2] 10% sur la gamme sur toutes les gammes sauf 1 000 V DCV, 750 ACV, 10 A DCI, 10 A ACI, résistance de 100 MΩ et capacité de 10000 μF.

[3] Pour chaque volt supplémentaire au-dessus de ± 500 VDC, ajouter 0,02 mV d'erreur.

[4] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5% de la plage. Pour les entrées de 1% à 5% de la gamme et <50 kHz, ajouter 0,1% de la gamme comme erreur supplémentaire. Pour 50 kHz à 100 kHz, ajoutez 0,13% de la gamme comme erreur supplémentaire.</p>

[5] Il est recommandé d'éteindre et de rallumer l'appareil toutes les 30 secondes pour un courant continu supérieur à 7 A CC ou 7 A CA RMS.

[6] Les spécifications sont valables pour une amplitude d'entrée sinusoïdale > 0,5 % de la plage. Une erreur de 0,1 % est ajoutée lorsque la plage d'entrée sinusoïdale est comprise entre 1 % et 5 %.

[7] Les spécifications sont valables pour la fonction ohm à 4 fils ou ohm à 2 fils avec fonction de valeur relative active. Sans fonctionnement relatif, ajoutez \pm 0,20 Ω d'erreur supplémentaire dans la fonction ohm à 2 fils.

[8] Les spécifications s'appliquent à la tension mesurée aux bornes d'entrée. Le courant de test de 1 mA est typique. Une variation de la source de courant produira un changement dans la chute de tension à travers une jonction de diode.

[9] En dehors des spécifications distinctes, la tension d'entrée alternative est de 15 % à 110 % de la plage à ≤100 kHz et de 30 % à 110 % de la plage à> 100 kHz. 750 V est limité à 750 Vrms. Si la plage de mesure de la tension alternative est de l'ordre de 600 mV, multipliez le % d'erreur de lecture par 10.

[10] Les spécifications s'appliquent à l'utilisation de la fonction de valeur relative. L'utilisation d'un condensateur non bobiné peut produire des erreurs supplémentaires. Les spécifications sont de 1% à 110% sur la gamme 2 nF et de 10% à 110% sur les autres gammes.
Caractéristique de température

Précision : ± (% de la valeur mesurée + % de la plage de mesure) [1].

Fonction	Type de capteu r	Modèle de capteur	Plage de mesure de la température	Précision : 1 an 23℃±5℃	Coefficient de température 0°C - 18°C 28°C - 50°C
Température	RTD ^[2]	α=0.00385	-200°C à 660°C	0.16℃	0.08+0.002
	TC ^[3]	В	0℃ à 1820℃	0.76°C	0.14°C
		E	-270℃ à 1000℃	0.5°C	0.02°C
		J	-210℃ à 1200℃	0.5°C	0.02°C
		К	-270℃ à 1372℃	0.5°C	0.03°C
		N	-270℃ à 1300℃	0.5°C	0.04°C
		R	-270℃ à 1768℃	0.5°C	0.09°C
		S	-270℃ à 1768℃	0.6°C	0.11℃
		Т	-270℃ à 400℃	0.5℃	0.03℃

[1] Les spécifications sont valables pour un réchauffement de 0,5 heure, sans tenir compte des erreurs de mesure du capteur lui-même.

[2] Spécification pour la mesure à deux fils en mode "REF".

[3] Compensation intégrée pour les prises de mesure froides sur le thermocouple, la précision est de ± 2 °C

Enregistrement des données

Enregistrement manuel des données				
Appuyez sur le bouton Enregistrer pour sauvegarder la lecture actuelle. Un maximum de 1000				
relevés peut être sauvegardé.				
Enregistrement automatique des données				
Max. Enregistrement de la valeur	1 million de mémoires internes ou 100 millions de			
mesurée	mémoires externes			
May, Canacitá do stockano	8 Mo de mémoire interne ou 800 Mo de mémoire			
Max. Capacité de Stockage	externe			
Intervalle d'échantillonnage	5 ms à 1000 s			

Déclencheur

Entrée de déclenchement externe	Niveau d'entrée	Compatible TTL (niveau élevé si la borne d'entrée gauche est suspendue en l'air)
	Condition de déclenchement	Front montant ou descendant sélectionnable
	Impédance d'entrée	≥20 kΩ en parallèle avec 400 pF, couplé en courant continu.

	Largeur d'impulsion minimale	500 μs	
Sortie VMC	Niveau	Compatible TTL	
	Polarité de la sortie	Sélectionnable positif ou négatif	
	Impédance de sortie	200 Ω, typique	

Spécifications générales

Dimensions	(L x H x P) : 235 mm × 110 mm × 295 mm
Poids	3,06 kg

7. Annexe

Appendice A : Pièce jointe

Accessoires standard :

Câble secteur

Cordons de test

Pinces crocodiles

Câble USB

Fusible de rechange 10A, 250 VAC

Logiciel / Pilote / Instructions d'utilisation

Annexe B : Entretien et nettoyage

Entretien généralNe rangez pas

et n'utilisez pas l'appareil dans un endroit où l'écran à cristaux liquides sera exposé à la lumière directe du soleil pendant de longues périodes.

NettoyagePour nettoyer

l'extérieur de l'appareil, suivez les étapes suivantes :

1. Pour éviter tout choc électrique, débranchez l'appareil du secteur et déconnectez tous les fils de test au niveau des entrées. 2.

Nettoyez l'extérieur de l'appareil à l'aide d'un chiffon doux et humide, sans faire couler d'eau. Ne rayez pas l'écran LCD lorsque vous le nettoyez. Pour éviter d'endommager l'appareil, n'utilisez pas de produits de nettoyage corrosifs ou chimiques.

Attention : pour éviter d'endommager l'appareil, n'utilisez pas de sprays, de liquides ou de solvants.

Avertissement : Avant de mettre l'appareil en marche, vérifiez que l'appareil est déjà complètement sec et évitez tout court-circuit électrique ou toute blessure corporelle due à l'humidité.

Annexe C : Remplacement du fusible secteur

Le fusible secteur se trouve dans la boîte à fusibles en plastique située sous le branchement secteur sur la paroi arrière.

Avertissement : débranchez le câble d'alimentation du panneau arrière et retirez tous les fils de test connectés à l'appareil avant de remplacer le fusible d'alimentation. Le non-respect de cette consigne peut exposer l'utilisateur à une tension dangereuse pouvant entraîner des blessures ou la mort.

N'utilisez que le bon type de fusible. Le non-respect de cette consigne peut entraîner des blessures ou des dommages matériels.

Tension	Fusible
100 - 120 V AC	250 V, F1AL
220 - 240 V AC	250 V, F0.5AL

Procédez comme suit pour effectuer le remplacement du fusible secteur : 1. éteignez le multimètre, retirez tous les cordons de test et autres câbles de l'appareil, y compris le câble d'alimentation.

2. Utilisez un tournevis à lame plate pour retirer la boîte à fusibles.

3. Remplacez le fusible par un nouveau qui devrait correspondre à la tension. Installez-le dans la boîte à fusibles et faites glisser la boîte à fusibles sur la paroi arrière.

Tous les droits sont réservés, y compris ceux de traduction, de réimpression et de reproduction de ce manuel ou de parties de celui-ci. Les reproductions de toute nature (photocopie, microfilm ou tout autre procédé) ne sont autorisées qu'avec l'accord écrit de l'éditeur.

Dernière version au moment de l'impression. Nous nous réservons le droit d'apporter des modifications techniques à l'unité dans l'intérêt du progrès.

Nous confirmons par la présente que l'appareil répond aux spécifications indiquées dans nos documents et qu'il est livré étalonné en usine.

Il est recommandé de répéter l'étalonnage après un an.

PeakTech® 10/2021 Ehr./Lie/Ehr.

PeakTech Prüf- und Messtechnik GmbH - Gerstenstieg 4 - DE-22926 Ahrensburg / Allemagne +49 (0) 4102 97398-80 +49 (0) 4102 97398-99 info@peaktech.de www.peaktech.de